Hierarchically structured biphenylene-bridged periodic mesoporous organosilica

Journal of Materials Chemistry, 2011, 21, 17388 published on 06.10.2011
J. Mater. Chem.
Novel composites of highly ordered and stable biphenyl-bridged periodic mesoporous organosilica (PMO) materials confined within the pores of anodic alumina membranes (AAM) were successfully synthesized by evaporation-induced self-assembly (EISA). 4,40-Bis(triethoxysilyl)biphenyl (BTEBP) was used as a precursor in combination with the ionic surfactant cetyltrimethylammonium bromide (CTAB) or triblock-copolymer F127 as structure-directing agents. The resulting mesophases were characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). With ionic CTAB as a structure directing agent, samples with a mixture of the 2D-hexagonal columnar and a lamellar mesophase were obtained within the AAM channels. When using the nonionic surfactant F127, mesophases with a 2D-hexagonal circular structure were formed in the AAM channels...
TU München